讲座人简介:
Bernhard Keller, Universite Paris Cite (巴黎西岱大学) 教授,著名代数学家,法国科学院“索菲·热尔曼”2014年度大奖得主、挪威皇家科学院通讯院士以及美国数学会会士。在微分分次理论、丛理论以及Hochschild同调理论中均做出了奠基性的学术成果,相关工作发表于Annals Math.,Invent. Math., ANES, Adv. Math.等国际知名数学期刊。因其在微分分次理论的奠基性工作受邀2006年国际数学家大会ICM做45分钟邀请报告。现任Adv. Math.,Forum Math. Pi和Forum Math. Sigma等杂志编委。
讲座简介:
The triprojective algebra of a Dynkin diagram Delta is a triangular glueing of three copies of the corresponding preprojective algebra. It has a canonical (connective) dg enhancement: the triprojective dg algebra. We will report on joint work with Miantao Liu and with Zhenhui Ding where we show that the category of Gorenstein projective dg modules over the triprojective dg algebra is the Higgs category (in the sense of Yilin Wu), which is expected to categorify the cluster variety of triples of flags of type Delta. We also confirm a conjecture by Merlin Christ which is crucial for his approach to the categorification of the higher Teichmüller spaces of type Delta.