报告人简介:
夏超,厦门大学数学科学学院院长、教授、博士生导师,福建省“闽江学者”特聘教授。2012年于德国弗莱堡大学获博士学位,先后在德国马克斯普朗克应用数学研究所、加拿大麦吉尔大学做博士后研究。曾入选国家高层次青年人才计划,获福建省青年科技奖。主要研究领域是微分几何与几何分析,在超曲面几何中的等周型不等式和相关刚性、几何自由边界问题、预定曲率和曲率流、特征值估计等方面取得了若干研究成果,论文发表在J. Differ. Geom.、Math. Ann.、Peking Math. J. 、Adv. Math.、ARMA、TAMS、IMRN、CVPDE、CAG、JGA等国际重要数学期刊。
报告简介:
In this talk, we show two kinds of sharp geometric inequalities, one is Heintze-Karcher-type inequality and the other is Willmore-type inequality, for hypersurfaces with boundary in convex domains. The arguments for the proof share similarity on using parallel hypersurfaces in the spirit of Heintze-Karcher, but in two opposite directions. We also give the generalization to the anisotropic case. The talk is based on joint works with Xiaohan Jia, Guofang Wang and Xuwen Zhang.