报告人简介:
Patrizia Pucci,意大利著名女数学家、院士。于佩鲁贾大学完成博士学业,主要从事非线性分析与偏微分方程研究,尤其在非线性椭圆型方程和分数阶算子领域有深厚造诣。已在 Acta of Math 等许多重要数学刊物发表了二百多篇学术论文,出版专著3部,包括经典著作《The Maximum Principle》。其研究成果在WoS(Web of Science)引用数据库中,总共有199篇论文被引用7358次,h指数为42。2016年获罗马尼亚克拉约瓦大学荣誉博士学位。2017年获Babes Bolyai大学的荣誉博士学位,并成为翁布里亚科学院成员。2018-2021年获由Clarivate Analytics 颁发的高被引作者。2019年成为Peloritana Pericolanti 自然科学研究院数学物理类研究员。
报告简介:
This talk presents some recent existence results for different problems involving operators with non standard growth conditions given in a series of papers. These operators were independently introduced by Zhikov in 1986 and Marcellini in 1991, in order to describe the behavior of highly anisotropic materials, that is, materials whose properties change drastically from point to point. Concerning PDEs applications, operators with non standard growth conditions arise from the study of general reaction–diffusion equations with nonhomogeneous diffusion and transport aspects. In particular, these nonhomogeneous operators have applications in biophysics, plasma physics and chemical reactions, with double phase features, where the unknown function u corresponds to the concentration term, and the differential operator represents the diffusion coefficient.
Joint works with R. Ding, L. Guo, C. Ji, S. Liang, B. Lin, J. Liu and L. Wang.